organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Theresa Kückmann, Hans-Wolfram Lerner and Michael Bolte*

Institut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Marie-Curie-Strasse 11, 60439 Frankfurt/Main, Germany

Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study T = 173 K Mean σ (C–C) = 0.002 Å R factor = 0.036 wR factor = 0.091 Data-to-parameter ratio = 15.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Methyltriphenylsilane

The title compound, $C_{19}H_{18}Si$, crystallizes with two almost identical molecules in the asymmetric unit, which are related by a non-crystallographic translation. The phenyl rings show a propeller-like conformation, with significant deviation from C_3 symmetry.

Comment

Organosilicon compounds have found widespread use in chemistry. In this context, we are interested in the chemistry of silyl anions. A convenient method that gives alkali metal silanides in good yield is the cleavage of Si–C bonds by alkali metals (Lerner, 2005). Recently, we have shown that $(Me_3Si)_4C$ can be synthesized by the reaction of $(Me_3Si)_3CLi$ with Me_3SiCl (Lerner & Bolte, 2005). We report here the X-ray crystal structure analysis of Ph₃SiMe, (I). The synthesis of (I) was achieved by treatment of the silyl chloride Ph₃SiCl with MeLi, as indicated in the reaction scheme below.

A perspective view of the two molecules of (I) is shown in Fig. 1. There are two almost identical molecules in the asymmetric unit. A least-squares fit of both is shown in Fig. 2. The two molecules adopt the same orientation in the crystal and they are related by a translation of $x \sim 0.51$, $y \sim 0.27$, $z \sim 0.52$, but no crystallographic symmetry element relating them can be detected. Bond lengths and angles can be regarded as normal (Cambridge Structural Database, Version 1.7 plus three updates; *MOGUL* Version 1.0; Allen, 2002). Two angles between the Si–CH₃ vector and the phenyl rings are almost equal [53.88 (7) and 50.46 (7)° for C11–C16 and C21–C26; 46.66 (7) and 51.00 (7)° for C11*A*–C16*A* and C21*A*–C26*A*], whereas the third one differs markedly [12.94 (8)° for C31–C36 and 15.19 (8)° for C31*A*–C36*A*]. As a result, no threefold rotation axis can be observed.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved Received 16 August 2005 Accepted 17 August 2005 Online 27 August 2005

Experimental

To a stirred solution of Ph₃SiCl (32.7 mmol) in Et₂O (10 ml), MeLi (32 mmol) in Et₂O (20 ml) was added at 195 K. After stirring for 12 h at 195 K, the solution was treated with *t*BuOH. Filtration and concentration of the filtrate yielded crystals of Ph₃SiMe (yield: 7.34 g, 84%) suitable for X-ray structure analysis. ¹H NMR (C₆D₆, internal TMS): δ 0.73 (*s*, 3H, Me), 7.15 (*m*, 9H, Ph), 7.52 (*m*, 6H, Ph). ¹³C{¹H} NMR (C₆D₆, internal TMS): δ 3.2 (Me), 128.2 (*m*-Ph), 129.6 (*p*-Ph), 135.7 (*o*-Ph), 136.5 (*i*-Ph).

 $D_x = 1.172 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 31037

reflections

 $\theta = 2.2 - 25.1^{\circ}$

 $\mu = 0.14~\mathrm{mm}^{-1}$

T = 173 (2) K

 $R_{\rm int} = 0.070$ $\theta_{\rm max} = 25.3^{\circ}$

 $h = -21 \rightarrow 22$

 $k = -11 \rightarrow 11$

 $l = -22 \rightarrow 22$

 $\Delta \rho_{\text{max}} = 0.41 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.24 \text{ e } \text{\AA}^{-3}$

Block, colourless $0.52 \times 0.48 \times 0.46$ mm

5587 independent reflections 4463 reflections with $I > 2\sigma(I)$

Crystal data

$C_{19}H_{18}S_1$
$M_r = 274.42$
Monoclinic, $P2_1/c$
a = 18.5888 (12) Å
b = 9.5697 (5) Å
c = 18.3776 (13) Å
$\beta = 107.883 \ (5)^{\circ}$
$V = 3111.2 (4) \text{ Å}^3$
Z = 8

Data collection

Stoe IPDS-II two-circle diffractometer
ω scans
Absorption correction: multi-scan (MULABS; Spek, 2003; Blessing, 1995)
T_{min} = 0.928, T_{max} = 0.940
37476 measured reflections

Refinement

Refinement on F^2	
$R[F^2 > 2\sigma(F^2)] = 0.036$	
$wR(F^2) = 0.091$	
S = 1.00	
5587 reflections	
361 parameters	

F² = 0.036 H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0578P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$

All H atoms were located in a difference electron-density map and refined with fixed individual displacement parameters $[U_{iso}(H) = 1.2U_{eq}(C) \text{ or } 1.5U_{eq}(C_{methyl})]$, using a riding model, with C–H = 0.95 and 0.98 Å, for aromatic and methyl C atoms, respectively.

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

References

Allen, F. H. (2002). Acta Cryst. B58, 380–388. Blessing, R. H. (1995). Acta Cryst. A51, 33–38.

Figure 1

Perspective view of the two molecules in the asymmetric unit of the title compound with the atom numbering. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Least-squares fit of the two molecules in the asymmetric unit (r.m.s. deviation = 0.0913 Å). The molecule containing Si1A is drawn with full bonds, while that containing Si1 is drawn with dashed lines.

Lerner, H.-W. (2005). Coord. Chem. Rev. 249, 781-798.

- Lerner, H.-W. & Bolte, M. (2005). Acta Cryst. E61, o2326-o2327.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1991). *SHELXTL-Plus*. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.
- Stoe & Cie (2001). X-AREA. Version 1.15. Stoe & Cie, Darmstadt, Germany.